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A cationic rhodium(I)/(R)-H8-BINAP or (R)-Segphos complex

catalyzes an intramolecular [2 + 2 + 2] cycloaddition of

unsymmetrical dienynes, leading to fused tri- and tetracyclic

cyclohexenes bearing two tertiary or quaternary carbon centers

in high yields with high enantio- and diastereoselectivity.

Transition-metal-catalyzed enantioselective [2 + 2 + 2] cy-

cloadditions involving alkenes are efficient synthetic methods

for the rapid construction of chiral six-membered carbo-

cycles.1,2 Catalytic enantioselective [2 + 2 + 2] cycloadditions

of two monoynes and an alkene,3 1,6-diyne and alkene,4 1,6-

enyne and monoyne,5 and enediyne4b,6 using Ni2 and Rh4–6

complexes have been reported. However, catalytic enantio-

selective [2 + 2 + 2] cycloadditions of one alkyne unit and

two alkene units are scarce.7,8 Sato and co-workers recently

reported the synthesis of cis-fused tricyclic cyclohexenes by a

Ru-catalyzed intramolecular [2 + 2 + 2] cycloaddition of

both symmetrical and unsymmetrical dienynes.9 Indepen-

dently, we have also reported that an intramolecular

[2 + 2 + 2] cycloaddition of a symmetrical dienyne in the

presence of a cationic rhodium(I)/(R)-H8-BINAP complex

proceeded to give the corresponding cis- and trans-fused

tricyclic cyclohexenes in quantitative yield, while the achiral

meso-isomer (cis-fused cyclohexene) was obtained as the major

product.4b,10,11 Thus, we examined a [2 + 2 + 2] cycloaddi-

tion of unsymmetrical dienyne 1a bearing two different tethers,

which would furnish two chiral tricyclic cyclohexenes 2a and

3a possessing two quaternary-substituted carbon centers.12

Although the reaction proceeded in high yield by using the

same rhodium catalyst, and the minor product (+)-3a was

obtained with high ee, the major product (+)-2a was obtained

with low ee (eqn (1)).

A possible mechanism for the formation of trans- and

cis-fused tricyclic cyclohexenes using the cationic rhodium(I)/

(R)-H8-BINAP complex as a catalyst is shown in Scheme 1.

We proposed that intermediates B and C furnish the same

enantiomer D of the trans-fused cyclohexene, and intermedi-

ates E and G furnish an enantiomeric pair of cis-fused

cyclohexenes F and H. One of the stereocenters is constructed

by the reaction of a more reactive enyne moiety of dienyne A

with rhodium due to the steric repulsion between the Rh–CH2

ð1Þ

moiety and the equatorial P–Ph group of (R)-H8-BINAP.

Subsequently, the other stereocenter is constructed by the

coordination of another double bond of dienyne A to rhodium

due to the steric repulsion between the tether or R group and

the axial P–Ph group of (R)-H8-BINAP. Although trans-fused

cyclohexene (+)-3a was obtained with high ee, a similar

reactivity of the two enyne moieties of 1a toward rhodium

causes the low ee of cis-fused cyclohexene (+)-2a, presumably

due to the formation of both intermediates E and G. Accord-

ing to the above-mentioned mechanism, a trans-selective co-

ordination mode of the double bond shown in intermediate B

or C would be favorable by employing dienyne A with the

longer tether, which results in increased yield of trans-fused

cyclohexene D. On the other hand, a large difference in the

reactivity between the two enyne moieties of dienyne A toward

rhodium would induce the selective formation of either inter-

mediate E or G, which results in improved ee of cis-fused

cyclohexene F or H, respectively.

Thus, the reaction of unsymmetrical dienyne 1b bearing

different tether lengths was examined in the presence of the

cationic rhodium(I)/(R)-H8-BINAP complex (5 mol%).13 For-

tunately, the reaction proceeded to give the corresponding

chiral tricyclic cyclohexenes 2b and 3b in quantitative yield

(Table 1, entry 1).z In this reaction, trans-isomer 3b was

obtained as the major product with high ee, while cis-isomer

2b was obtained as the minor product with low ee. The

reaction of dienyne 1c bearing an ether-linked 1,6-enyne

moiety proceeded to give trans-isomer (+)-3c as the major

product with high ee and cis-isomer (+)-2c as the minor

product with moderate ee (entry 2). These results might show

that the reactivity of 1,6- and 1,7-enyne moieties toward
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rhodium is not different enough to allow the selective forma-

tion of intermediate E or G. The absolute configuration of

trans-fused cyclohexene (+)-3c was unambiguously deter-

mined by X-ray crystallographic analysis (Fig. 1), which is

indeed consistent with that derived from our proposed inter-

mediates B and C.

We anticipated that the reaction of phenol-linked dienyne

1d would selectively provide cis-fused cyclohexene 2d with

high ee through intermediate E (W = NTs). The phenol-

linked 1,7-enyne moiety may be much less reactive to rhodium

than the 1,6-enyne moiety, the double bond of which may not

coordinate to rhodium with trans-selectivity due to the rigid

structure of the phenol-linked tether. As expected, 1d cleanly

cyclized at room temperature to give (+)-2d as a sole product

in high yield with high ee, although a high catalyst loading

(20 mol%) was required (entry 3).14 By conducting the reac-

tion at elevated temperature (40 1C), the catalyst loading could

be reduced to 10 mol% with slight erosion of the yield and ee

Scheme 1 Possible mechanism for the formation of trans- and cis-
fused tricyclic cyclohexenes.

Table 1 Rhodium-catalyzed enantio- and diastereoselective
[2 + 2 + 2] cycloaddition of unsymmetrical dienynes 1b–1ja

Entry
Dienyne
1 Conditions

Product
[2 (cis)/3
(trans)],
yield (%)b

{cis : trans},
ee (%)

1 1b (Z = NTs) 80 1C, 3 h 2b/3b, 499
{1 : 2.4}, 4/99,

2 1c (Z = O) rt, 16 h (+)-2c, 24, 45
(3aR,5aS)-(+)-
3c, 75, 499

3cd 1d (R = Me) rt, 64 h (+)-2d, 98, 94
4ce 1d (R = Me) 40 1C, 40 h (+)-2d, 94, 86
5e 1e (R = H) rt, 16 h (3aR,5aS)-(+)-

2e, 89, 99
6 1e (R = H) 80 1C, 3 h (3aR,5aS)-(+)-

2e, 82, 98

7e 1f [Z = C(CO2Et)2] rt, 16 h (+)-2f, 87, 97
8 1f [Z = C(CO2Et)2] 80 1C, 3 h (+)-2f, 88, 93
9 1g (Z = O) 80 1C, 3 h (+)-2g, 95, 93

10 1h 80 1C, 3 h 4, 70
{E/Z =
1 : 3.3}

11 1i 80 1C, 3 h 2i/3i, 57
{14 : 1}, 96/499
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(entry 4). Interestingly, the reactions of dienynes 1e–1g bearing

monosubstituted 1,6-enyne moieties proceeded to give the

desired cyclohexenes (+)-2e–2g in high yields with high ees

(entries 5–9). Furthermore, these reactions could be conducted

with lower catalyst loadings than those for dienyne 1d bearing

a geminally disubstituted 1,6-enyne moiety. However, the

reaction of dienyne 1h bearing a monosubstituted 1,7-enyne

moiety furnished an E/Z mixture of diene 4 presumably

through b-hydride elimination of the rhodacycle intermediate

(entry 10). Finally, ester-linked cyclohexene 2i and cyclohex-

ene (+)-2j containing a seven-membered ring were also ob-

tained with high ees from the corresponding dienynes 1i and

1j, respectively (entries 11 and 12). The absolute configuration

of cis-fused cyclohexene (+)-2e was unambiguously deter-

mined by X-ray crystallographic analysis (Fig. 1), which is

again consistent with that derived from our proposed inter-

mediate E (W = NTs).

In conclusion, we have determined that a cationic rhodium(I)/

(R)-H8-BINAP or (R)-Segphos complex catalyzes an intra-

molecular [2 + 2 + 2] cycloaddition of rationally designed

unsymmetrical dienynes, leading to fused tricyclic and tetracyclic

cyclohexenes possessing two tertiary or quaternary carbon

centers in high yields with high enantio- and diastereoselectivity.
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0.5 h, the resulting solution was concentrated to dryness and the
residue was dissolved in CH2Cl2 (rt–40 1C) or (CH2Cl)2 (80 1C) (0.5
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Fig. 1 ORTEP drawings of trans-cyclohexene (3aR,5aS)-3c (left) and

cis-cyclohexene (3aR,5aS)-2e (right).

Table 1 (continued )

Entry
Dienyne
1 Conditions

Product
[2 (cis)/3
(trans)],
yield (%)b

{cis : trans},
ee (%)

12e 1j 80 1C, 16 h (+)-2j 81, 98

a [Rh(cod)2]BF4 (0.010 mmol), (R)-H8-BINAP (0.010 mmol), 1b–1j

(0.20 mmol), and CH2Cl2 (rt–40 1C) or (CH2Cl)2 (80 1C) (2.0 mL) were

used. b Isolated yield. c Ligand: (R)-Segphos. d Catalyst: 20 mol%.
e Catalyst: 10 mol%.
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